A Multi-Frequency Sampling Method for the Inverse Source Problems with Sparse Measurements
نویسندگان
چکیده
منابع مشابه
On the Simple Inverse Sampling with Replacement
In this paper we derive some unbiased estimators of the population mean under simple inverse sampling with replacement, using the class of Hansen-Hurwitz and Horvitz-Thompson type estimators and the post-stratification approach. We also compare the efficiency of resulting estimators together with Murthy's estimator. We show that in despite of general belief, the strategy consisting of inverse s...
متن کاملMultilevel Linear Sampling Method for Inverse Scattering Problems
A novel multilevel algorithm is presented for implementing the widely used linear sampling method in inverse obstacle scattering problems. The new method is shown to possess asymptotically optimal computational complexity. For an n×n sampling mesh in R2 or an n×n×n sampling mesh in R3, the proposed algorithm requires one to solve only O(nN−1) far-field equations for a RN problem (N=2,3), and th...
متن کاملAn efficient sampling method for stochastic inverse problems
A general framework is developed to treat inverse problems with parameters that are random fields. It involves a sampling method that exploits the sensitivity derivatives of the control variable with respect to the random parameters. As the sensitivity derivatives are computed only at the mean values of the relevant parameters, the related extra cost of the present method is a fraction of the t...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CSIAM transaction on applied mathematics
سال: 2023
ISSN: ['2708-0560', '2708-0579']
DOI: https://doi.org/10.4208/csiam-am.so-2022-0052